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Timeline of Energetic Ionic Liquids
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“Molten salts are nothing new, but these were the only ones I 
ever heard of that were liquid at 25°C. I’ve never found a use for 
the ethylamine compound, but something with such interesting 
properties ought to be good for something!”

John D. Clark, Ignition! An Informal History of Liquid Rocket Propellants, Rutgers University Press, New Brunswick, 
New Jersey, 1972

Gabriel, S. Berichte, 1888, 21, 2664.Curtius, T. Ber. Dtsch. Chem. Ges. 1891, 24, 3341. Walden, P. Bull. Acad. Imp. Sci, 1914, 1800.
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Why ILs as 
Energetic Materials?

“Tuning” IL structure for:
Energy content
Oxygen balance
Melting point
Liquid range
Ignition behavior

Propulsion:
Thrusters

Explosives:
Melt-cast munitions

?????
Power generators, 
APUs,….
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Hydrazine Monomethylhydrazine

Ionic Liquid fuels can eliminate vapor toxicity and 
possess acceptable safety properties

 Hydrazine fuel vapor toxicity can increase 
testing/operations costs:
 System Handling/Fueling by certified crews 

in high level PPE
 Monitoring system in field

 Vapor toxicity can limit transportation options

Hydrazine – A State of the Art Rocket Fuel
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 Ignites (Hypergolic)
 Ignites Fast (<10ms)
 Ignites Fast & Green(er)

Objectives for Ionic Liquids as Bipropellant Fuels

Image: NASA
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 Simple ionic azides such as Me4NN3 and NaN3 form nitrates in 
N2O4.  

 The reaction involves the unstable intermediate NON3 which 
completely decomposes to N2 and N2O.  

 If this reactions is “hot” enough it could lead to hypergolic 
ignition.

N2O4 NO3
- + NO+

N3
- + NO+ N3NO N2 + N2O

N2O4 + N3
- NO3

- + N2 + N2O

Prospect for Hypergolicity – Driving Force Behind 
IL Azides
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Thermal Stability and Reactivity of IL Azides

 Decomp onset of 129°C indicated marginal stability
 TGA mass loss > 12% isothermal for 48 h @ 75°C


 NOT HYPERGOLIC with WFNA, RFNA, IRFNA, NTO or H2O2

Schneider, S.; Hawkins, T.; Rosander, M.; Mills, J.; Vaghjiani, G.; Chambreau, S. Inorg. Chem. 2008, 47(13), 6082-6089.
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Anion Control of Hypergolic Activity
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Oxygenated Fuel-Rich 
Oxidizer: White fuming nitric acid 

Not Hypergolic Hypergolic; 

ID == 43.0 ms 



Search for Trigger Group – Faster Ignition 
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Cation Control of Hypergolic Activity

 Focus on development of cationic structures, which allow for 
fast, hypergolic ignition with common oxidizers independent of 
the accompanying anion. 

 The ability to endow the cation with a hypergolic “trigger” 
widens the synthetic design space available for hypergolic fuels 
and provides another possible avenue for the promotion of 
rapid ignition. 
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Requirements for a “Green(er)” Oxidizer

 Storable! (non cryogenic)
 High performing!

Desirable –

 Can be served as a refreshing drink 
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What’s Out There?

WATER!

 Nitric Acid (extreme corrosivity)

 N2O4 (less corrosive, high toxicity combined with high 
vapor pressure)

 H2O2 (less toxic vapor and corrosivity, environmental 
benign decomposition products)
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Lack of heterocyclic BH4 salts 

 Published routes to BMIM BH4 used IL halide in acetonitrile or CH2Cl2
 This work could not be reproduced and only yielded material with 

substantial halide content
Best results 77.5% [BH4]- halide content 22.5%
M. Bürchner, A.M.T. Erle, H. Scherer, I. Krossing Chem. Eur. J. 2012, 18, 2254.

 Heterocyclic borohydride salts tend to have undesirable physical properties

H1

H2

H3
H4

2.40(3)

2.20(3)
2.38(3)

2.31(3)
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Trihexyltetradecylphosphonium
tetrakis(tetrahydroborato)aluminate

11B NMR of R4PABH
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Response Times of CBH ILs towards 
Nitric acid  and Hydrogen peroxide 

 In the case of the ethylammonium salt,
the drop surface of the fuel was so
quickly oxidized that the fuel became
momentarily immiscible with the
oxidizer.
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 Many transition-metal salts of Fe+2, Fe+3, Co+2, Co+3, Ni+1, Ni+2, Cu+1, Cu+2, Mn+2

and V+2 as well as NaI have been used to accelerate the decomposition of
hydrogen peroxide.

 Ultimately this led to hypergolic ignition between a catalyst-loaded fuel and
hydrogen peroxide.

 Typical problems encountered were either a reaction between the metal salt and
the fuel or precipitation.

 Also, the metal ions are not catalysts in the classical sense, but are reacting with
hydrogen peroxide.

 The iodide anion on the other hand is known to catalytically decompose
hydrogen peroxide.

Catalytic  approach for H2O2 decomposition 
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 Substituting Na for an organic ammonium cation increases the overall energy
content and hopefully the solubility of the iodide salt in the fuel.

 In the case of multiple cation systems, metathesis reactions can easily take
place.

Multi ion systems 
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 No precipitation of the ethylammonium iodide salts was observed even after
several months of ambient storage.

Ionic Liquid iodides in cyanoborohydride
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BMIM FeCl4
Weight %

Ignition Delay (ID) in [ms]
DMAZ 
Triflimide

HEH Nitrate TMAZ 
Dicyanamide

18 weight% - 50 ms -

16   weight% 875 ms - -
8 weight% - - 130 ms

0      weight% No Ignition No Ignition No Ignition

Catalytic Ignition in H2O2

• 97% H2O2 used as oxidizer
• No ignition with catalyst ‘neat’

Compound

ID (ms) with 97% H2O2

Catalyst

18 Wt%
Catalyst

16 Wt%
Catalyst

8 Wt%
Catalyst

0 Wt%
Catalyst

50

875

130

No 
Ignition

No 
Ignition

No 
Ignition
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Catalytic Hypergolic Ignition

•HEHN 

•HEHN with Catalyst 

0 ms 15 ms 131 ms 767 ms

0 ms 42 ms 51 ms 57 ms 0 ms 500 ms 800 ms 876 ms

•DMAZTF with Catalyst 

0 ms 100 ms 110 ms 116 ms

•TMAZDCA with Catalyst 

Catalyst BMIM FeCl4
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Continuing to synthesize new fuel candidates with 
hypergolic triggers and desirable physical 
properties
Pairing new fuel candidates with green(er) 

oxidizers
Established storable fuel/catalyst IL mixtures
First demonstration of ignition of non-hypergolic 

ILs utilizing IL catalysts in H2O2

Summary and Conclusion
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